Invasion percolation with long-range correlations: first-order phase transition and nonuniversal scaling properties
نویسندگان
چکیده
We present the results of extensive Monte Carlo simulations of the invasion percolation model with trapping (TIP) with long-range correlations, a problem which is relevant to multiphase flow in field-scale porous media, such as oil reservoirs and groundwater aquifers, as well as flow in rock fractures. The correlations are generated by a fractional Brownian motion characterized by a Hurst exponent H. We employ a highly efficient algorithm for simulating TIP, and a novel method for identifying the backbone of TIP clusters. Both site and bond TIP are studied. Our study indicates that the backbone of bond TIP is loopless and completely different from that of site TIP. We obtain precise estimates for the fractal dimensions of the sample-spanning cluster (SSC), the minimal path, and the backbone of site and bond TIP, and analyze the size distribution of the trapped clusters, in order to identify all the possible universality classes of TIP with long-range correlations. For site TIP with H > 1/2 the SSC and its backbone are compact, indicating a first-order phase transition at the percolation threshold, while the minimal paths are essentially straigth lines. For H < 1/2 the SSC, its backbone, and the minimal paths are all fractal with fractal dimensions that depend on the Hurst exponent H. The fractal dimension of the loopless backbone for bond TIP is much less than that of site TIP for any H.
منابع مشابه
Quantum Phase Transitions on Percolating Lattices
When a quantum many-particle system exists on a randomly diluted lattice, its intrinsic thermal and quantum fluctuations coexist with geometric fluctuations due to percolation. In this paper, we explore how the interplay of these fluctuations influences the phase transition at the percolation threshold. While it is well known that thermal fluctuations generically destroy long-range order on the...
متن کاملPatchy percolation on a hierarchical network with small-world bonds.
The bond-percolation properties of the recently introduced Hanoi networks are analyzed with the renormalization group. Unlike scale-free networks, these networks are meant to provide an analytically tractable interpolation between finite-dimensional, lattice-based models and their mean-field limits. In percolation, the hierarchical small-world bonds in the Hanoi networks impose order by uniting...
متن کاملThe shape of invasion percolation clusters in random and correlated media
The shape of two-dimensional invasion percolation clusters are studied numerically for both nontrapping (NTIP) and trapping (TIP) invasion percolation processes. Two different anisotropy quantifiers, the anisotropy parameter and the asphericity are used for probing the degree of anisotropy of clusters. We observe that in spite of the difference in scaling properties of NTIP and TIP, there is no...
متن کاملLong-range correlated percolation and flow and transport in heterogeneous porous media
We introduce a percolation model with long-range correlations, and investigate ils scaling properties. Using this model, we provide a theoretical explanation for
متن کاملGround State Structure, Domain Walls, and External Field Response in Random Magnets
The ground state structure and domain walls in Ising-like magnets with quenched randomness are studied at zero temperature. The methods employed are exact ground state calculations using graph-theoretical optimization and extreme statistics arguments. The elastic manifolds, i.e., domain walls, with random-bond disorder are investigated with two different types of periodicity. The first type of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
دوره 61 5A شماره
صفحات -
تاریخ انتشار 2000